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ABSTRACT 
Abel’s integral equation is a singular integral equation which appears in many branches of sciences such as physics, 

mechanics, radio astronomy, atomic scattering, X-ray radiography, electron emission and seismology. In this paper, 

we apply Kamal transform to solve Abel’s integral equation and some numerical applications are given in 

application section to explain the effectiveness of Kamal transform for solving Abel’s integral equation. 
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I. INTRODUCTION 
 

In 1823, Niels Henrik Abel studied the motion of particle on smooth curve lying on a vertical plane and described it 

in mathematical form in terms of Abel’s integral equation as [1-2]  

𝑓(𝑥) = ∫
1

√𝑥−𝑡
𝑢(𝑡)

𝑥

0
𝑑𝑡                                                                                                                (1) 

 

Here the kernel 𝐾(𝑥, 𝑡) =
1

√𝑥−𝑡
 becomes ∞ at 𝑡 = 𝑥, the function 𝑓(𝑥) is known function and the function 𝑢(𝑡) is 

unknown function. 

 

In the modern time, integral transforms are of great value in the treatment of differential equations with constant or 

variable coefficients, partial differential equations with constant or variable coefficients, partial integro-differential 

equations, integral equations, integro-differential equations etc. Many scholars [3-26] used different integral 

transforms such as Laplace transform, Fourier transform, Kamal transfom, Aboodh transform, Elzaki transform, 

Mohand transform, Hankel transform, Wavelet transform, Sumudu transform and solved many advanced problems 

of science, engineering and daily life.  

In 2016, Abdelilah and Hassan [27] gave a new integral transform “Kamal transform’’ of the function 𝐹(𝑡) for 𝑡 ≥
0 as  

𝐾{𝐹(𝑡)} = ∫ 𝐹(𝑡)𝑒
−𝑡

𝑣 𝑑𝑡
∞

0
= 𝐺(𝑣), 𝑘1 ≤ 𝑣 ≤ 𝑘2                                                                          (2) 

where operator 𝐾 is called the Kamal transform operator. 

 

Aggarwal et al. [28] gave a comparative study of Mohand and Kamal transforms. Aggarwal and Gupta [29] 

discussed the solution of linear Volterra integro-differential equations of second kind using Kamal transform. 

Abdelilah and Hassan [30] solved partial differential equations by applying Kamal transform. Aggarwal et al. [31] 

gave a new application of Kamal transform for solving linear Volterra integral equations. Gupta et al. [32] discussed 

the solution of linear partial integro-differential equations using Kamal transform. Application of Kamal transform 

for solving linear Volterra integral equations of first kind was given by Aggarwal et al. [33]. Aggarwal et al. [34] 

used Kamal transform for solving population growth and decay problems. Aggarwal [35] defined Kamal transform 

of Bessel’s functions.  

 

In this paper, we solve Abel’s integral equation using Kamal transform and explain all procedure by giving some 

numerical applications in application section. 

 

II. SOME USEFUL PROPERTIES OF KAMAL TRANSFORM 
 

2.1 Linearity property [28, 32-35]: 

If Kamal transform of functions 𝐹1(𝑡) and 𝐹2(𝑡)are𝐺1(𝑣)and 𝐺2(𝑣) respectively then Kamal transform of [𝑎𝐹1(𝑡) +
𝑏𝐹2(𝑡)] is given by [𝑎𝐺1(𝑣) + 𝑏𝐺2(𝑣)], where 𝑎, 𝑏 are arbitrary constants. 
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2.2 Change of scale property [28, 35]: 

If Kamal transform of function 𝐹(𝑡) is 𝐺(𝑣) then Kamal transform of function 𝐹(𝑎𝑡)is given by 
1

𝑎
𝐺(𝑎𝑣). 

 

2.3 Shifting property [28]:  

If Kamal transform of function 𝐹(𝑡) is 𝐺(𝑣)  then Kamal transform of function 𝑒𝑎𝑡𝐹(𝑡)is given by 𝐺 (
𝑣

1−𝑎𝑣
). 

 

2.4 Kamal transform of the derivatives of the function  𝑭(𝒕)[27-29, 31-32, 34-35]: 

If 𝐾{𝐹(𝑡)} = 𝐺(𝑣) then  

a) 𝐾{𝐹′(𝑡)} =
1

𝑣
𝐺(𝑣) − 𝐹(0) 

b) 𝐾{𝐹′′(𝑡)} =
1

𝑣2 𝐺(𝑣) −
1

𝑣
𝐹(0) − 𝐹′(0) 

c) 𝐾{𝐹(𝑛)(𝑡)} =
1

𝑣𝑛 𝐺(𝑣) −
1

𝑣𝑛−1 𝐹(0) −
1

𝑣𝑛−2 𝐹′(0) … … − 𝐹(𝑛−1)(0) 

 

2.5 Convolution theorem for Kamal transforms [28-29, 31-33]: 

If Kamal transform of functions 𝐹1(𝑡) and 𝐹2(𝑡)are𝐺1(𝑣)and 𝐺2(𝑣) respectively then Kamal transform of their 

convolution 𝐹1(𝑡) ∗ 𝐹2(𝑡) is given by  

𝐾 {𝐹1(𝑡) ∗ 𝐹2(𝑡)} = 𝐾{𝐹1(𝑡)}𝐾{𝐹2(𝑡)} 

⇒ 𝐾{𝐹1(𝑡) ∗ 𝐹2(𝑡)} = 𝐺1(𝑣)𝐺2(𝑣), where 𝐹1(𝑡) ∗ 𝐹2(𝑡) is defined by 

 𝐹1(𝑡) ∗ 𝐹2(𝑡) = ∫ 𝐹1(𝑡 − 𝑥)
𝑡

0
𝐹2(𝑥)𝑑𝑥 = ∫ 𝐹1(𝑥)

𝑡

0
𝐹2(𝑡 − 𝑥)𝑑𝑥 

 

III. KAMAL TRANSFORM OF FREQUENTLY ENCOUNTERED FUNCTIONS [27-29, 31-

35] 

 
Table: 1 

S.N. 𝐹(𝑡) 𝐾{𝐹(𝑡)} = 𝐺(𝑣) 

1. 1 𝑣 

2. 𝑡 𝑣2 

3. 𝑡2 2! 𝑣3 

4. 𝑡𝑛, 𝑛 ∈ 𝑁 𝑛! 𝑣𝑛+1 

5. 𝑡𝑛, 𝑛 > −1 Γ(𝑛 + 1)𝑣𝑛+1 

6. 𝑒𝑎𝑡 𝑣

1 − 𝑎𝑣
 

7. 𝑠𝑖𝑛𝑎𝑡 𝑎𝑣2

1 + 𝑎2𝑣2
 

8. 𝑐𝑜𝑠𝑎𝑡 𝑣

1 + 𝑎2𝑣2
 

9. 𝑠𝑖𝑛ℎ𝑎𝑡 𝑎𝑣2

1 − 𝑎2𝑣2
 

10. 𝑐𝑜𝑠ℎ𝑎𝑡 𝑣

1 − 𝑎2𝑣2
 

11 𝐽0(𝑡) 𝑣

√(1 + 𝑣2)
 

12 𝐽1(𝑡) 
1 −

1

√(1 + 𝑣2)
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IV. INVERSE KAMAL TRANSFORM [28-29, 31-35] 
 

If 𝐾{𝐹(𝑡)} = 𝐺(𝑣) then 𝐹(𝑡) is called the inverse Kamal transform of 𝐺(𝑣) and mathematically it is defined as   

𝐹(𝑡) = 𝐾−1{𝐺(𝑣)}, where 𝐾−1 is the inverse Kamal transform operator. 

 

V. LINEARITY PROPERTY OF INVERSE KAMAL TRANSFORMS [34] 
 

If 𝐾−1{𝐻(𝑣)} = 𝐹(𝑡) and 𝐾−1{𝐼(𝑣)} = 𝐺(𝑡)  then 

𝐾−1{𝑎𝐻(𝑣) + 𝑏𝐼(𝑣)} = 𝑎𝐾−1{𝐻(𝑣)} + 𝑏𝐾−1{𝐼(𝑣)} 

⇒ 𝐾−1{𝑎𝐻(𝑣) + 𝑏𝐼(𝑣)} = 𝑎𝐹(𝑡) + 𝑏𝐺(𝑡), where 𝑎, 𝑏 are arbitrary constants. 

 

VI. INVERSE KAMAL TRANSFORM OF FREQUENTLY ENCOUNTERED FUNCTIONS 

[28-29, 31-35] 

 
Table: 2 

S.N. 𝐺(𝑣) 𝐹(𝑡) = 𝐾−1{𝐺(𝑣)} 

1. 𝑣 1 

2. 𝑣2 𝑡 

3. 𝑣3 𝑡2

2!
 

4. 𝑣𝑛+1, 𝑛𝜖𝑁 𝑡𝑛

𝑛!
 

5. 𝑣𝑛+1, 𝑛 > −1 𝑡𝑛

Γ(𝑛 + 1)
 

6. 𝑣

1 − 𝑎𝑣
 𝑒𝑎𝑡 

7. 𝑣2

1 + 𝑎2𝑣2
 

𝑠𝑖𝑛𝑎𝑡

𝑎
 

8. 𝑣

1 + 𝑎2𝑣2
 𝑐𝑜𝑠𝑎𝑡 

9. 𝑣2

1 − 𝑎2𝑣2
 

𝑠𝑖𝑛ℎ𝑎𝑡

𝑎
 

10. 𝑣

1 − 𝑎2𝑣2
 𝑐𝑜𝑠ℎ𝑎𝑡 

11. 𝑣

√(1 + 𝑣2)
 𝐽0(𝑡) 

12. 
1 −

1

√(1 + 𝑣2)
 

𝐽1(𝑡) 

 

VII. KAMAL TRANSFORM FOR SOLVING ABEL’S INTEGRAL EQUATION:  
 

In this section, we present Kamal transform for solving Abel’s integral equation. 

Taking Kamal transform of both sides of (1), we have 

𝐾{𝑓(𝑥)} = 𝐾 {∫
1

√𝑥 − 𝑡
𝑢(𝑡)

𝑥

0

𝑑𝑡} 

⇒ 𝐾{𝑓(𝑥)} = 𝐾{𝑥−1/2 ∗ 𝑢(𝑥)}                                                                                                       (3) 

 

Applying convolution theorem of Kamal transform in (3), we have 

𝐾{𝑓(𝑥)} = 𝐾{𝑥−1/2}𝐾{𝑢(𝑥)} 

⇒ 𝐾{𝑓(𝑥)} = √𝜋𝑣1/2𝐾{𝑢(𝑥)} 

⇒ 𝐾{𝑢(𝑥)} =
1

√𝜋𝑣1/2
𝐾{𝑓(𝑥)} 
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⇒ 𝐾{𝑢(𝑥)} =
1

𝜋𝑣
[√𝜋𝑣1/2𝐾{𝑓(𝑥)}] 

⇒ 𝐾{𝑢(𝑥)} =
1

𝜋𝑣
[𝐾{𝑥−1/2}𝐾{𝑓(𝑥)}] 

⇒ 𝐾{𝑓(𝑥)} =
1

𝜋𝑣
𝐾{𝑥−1/2 ∗ 𝑓(𝑥)} 

⇒ 𝐾{𝑢(𝑥)} =
1

𝜋𝑣
[𝐾 {∫

1

√𝑥 − 𝑡
𝑓(𝑡)

𝑥

0

𝑑𝑡}] 

⇒ 𝐾{𝑢(𝑥)} =
1

𝜋𝑣
𝐾{𝐹(𝑥)}                                                                                                             (4) 

where 𝐹(𝑥) = ∫
1

√𝑥−𝑡
𝑓(𝑡)

𝑥

0
𝑑𝑡                                                                                                       (5) 

 

Now applying the property, Kamal transform of derivative of the function, on (5), we have  

𝐾{𝐹′(𝑥)} =
1

𝑣
𝐾{𝐹(𝑥)} − 𝐹(0) 

⇒ 𝐾{𝐹′(𝑥)} =
1

𝑣
𝐾{𝐹(𝑥)} 

⇒ 𝐾{𝐹(𝑥)} = 𝑣𝐾{𝐹′(𝑥)}                                                                                                             (6) 

Now from (4) and (6), we have 

𝐾{𝑢(𝑥)} =
1

𝜋
𝐾{𝐹′(𝑥)}                                                                                                                  (7) 

 

Applying inverse Kamal transform on both sides of (7), we get 

𝑢(𝑥) =
1

𝜋
𝐹′(𝑥) =

1

𝜋
 

𝑑

𝑑𝑥
𝐹(𝑥)                                                                                                         (8) 

Using (5) in (8), we have  

𝑢(𝑥) =
1

𝜋
[

𝑑

𝑑𝑥
∫

1

√𝑥−𝑡
𝑓(𝑡)

𝑥

0
𝑑𝑡]                                                                                                        (9) 

which is the required solution of (1). 

 

VIII. APPLICATIONS 
 

In this section, we present some numerical applications to explain the complete procedure of solving Abel’s integral 

equation using Kamal transform. 

 

8.1 Consider the Abel’s integral equation with (𝑥) = 𝑥 : 

𝑥 = ∫
1

√𝑥−𝑡
𝑢(𝑡)

𝑥

0
𝑑𝑡                                                                                                                      (10) 

 

 

Taking Kamal transform of both sides of (10), we have 

𝐾{𝑥} = 𝐾 {∫
1

√𝑥 − 𝑡
𝑢(𝑡)

𝑥

0

𝑑𝑡} 

⇒ 𝑣2 = 𝐾{𝑥−1/2 ∗ 𝑢(𝑥)}                                                                                                             (11) 

 

Applying convolution theorem of Kamal transform in (11), we have 

𝑣2 = 𝐾{𝑥−1/2}𝐾{𝑢(𝑥)} 

⇒ 𝑣2 = √𝜋𝑣1/2𝐾{𝑢(𝑥)} 

⇒ 𝐾{𝑢(𝑥)} =
𝑣3/2

√𝜋
                                                                                                                         (12)  

 

Applying inverse Kamal transform on both sides of (12), we get 

𝑢(𝑥) =
1

√𝜋
𝐾−1{𝑣3/2} 

⇒ 𝑢(𝑥) =
2

𝜋
𝑥1/2                                                                                                                         (13) 

which is the required solution of (10). 
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8.2 Consider the Abel’s integral equation with (𝑥) = 1 + 𝑥 + 𝑥2 : 

1 + 𝑥 + 𝑥2 = ∫
1

√𝑥−𝑡
𝑢(𝑡)

𝑥

0
𝑑𝑡                                                                                                     (14) 

 

Taking Kamal transform of both sides of (14), we have 

𝐾{1} + 𝐾{𝑥} + 𝐾{𝑥2} = 𝐾 {∫
1

√𝑥 − 𝑡
𝑢(𝑡)

𝑥

0

𝑑𝑡} 

⇒ 𝑣 + 𝑣2 + 2𝑣3 = 𝐾{𝑥−1/2 ∗ 𝑢(𝑥)}                                                                                          (15) 

 

Applying convolution theorem of Kamal transform in (15), we have 

𝑣 + 𝑣2 + 2𝑣3 = 𝐾{𝑥−1/2}𝐾{𝑢(𝑥)} 

⇒ 𝑣 + 𝑣2 + 2𝑣3 = √𝜋𝑣1/2𝐾{𝑢(𝑥)} 

⇒ 𝐾{𝑢(𝑥)} =
1

√𝜋
[𝑣1/2 + 𝑣3/2 + 2𝑣5/2]                                                                                    (16)  

 

Applying inverse Kamal transform on both sides of (16), we get 

𝑢(𝑥) =
1

√𝜋
𝐾−1{𝑣1/2 + 𝑣3/2 + 2𝑣5/2} 

⇒ 𝑢(𝑥) =
1

√𝜋
[𝐾−1{𝑣1/2} + 𝐾−1{𝑣3/2} + 2𝐾−1{𝑣5/2}]  

⇒ 𝑢(𝑥) =
1

𝜋
[𝑥−1/2 + 2𝑥1/2 +

8

3
𝑥3/2]                                                                                       (17) 

which is the required solution of (14). 

 

8.3 Consider the Abel’s integral equation with (𝑥) = 3𝑥2 : 

3𝑥2 = ∫
1

√𝑥−𝑡
𝑢(𝑡)

𝑥

0
𝑑𝑡                                                                                                                (18) 

 

Taking Kamal transform of both sides of (18), we have 

3𝐾{𝑥2} = 𝐾 {∫
1

√𝑥 − 𝑡
𝑢(𝑡)

𝑥

0

𝑑𝑡} 

⇒ 6𝑣3 = 𝐾{𝑥−1/2 ∗ 𝑢(𝑥)}                                                                                                          (19) 

 

Applying convolution theorem of Kamal transform in (19), we have 

6𝑣3 = 𝐾{𝑥−1/2}𝐾{𝑢(𝑥)} 

⇒ 6𝑣3 = √𝜋𝑣1/2𝐾{𝑢(𝑥)} 

⇒ 𝐾{𝑢(𝑥)} =
6

√𝜋
𝑣5/2                                                                                                                 (20)  

 

Applying inverse Kamal transform on both sides of (20), we get 

𝑢(𝑥) =
6

√𝜋
𝐾−1{𝑣5/2} 

⇒ 𝑢(𝑥) =
8

𝜋
𝑥3/2                                                                                                                        (21) 

which is the required solution of (18). 

 

8.4 Consider the Abel’s integral equation with (𝑥) =
4

3
𝑥3/2 : 

4

3
𝑥3/2 = ∫

1

√𝑥−𝑡
𝑢(𝑡)

𝑥

0
𝑑𝑡                                                                                                              (22) 

 

Taking Kamal transform of both sides of (22), we have 

4

3
𝐾{𝑥3/2} = 𝐾 {∫

1

√𝑥 − 𝑡
𝑢(𝑡)

𝑥

0

𝑑𝑡} 

⇒ √𝜋𝑣5/2 = 𝐾{𝑥−1/2 ∗ 𝑢(𝑥)}                                                                                                   (23) 

 

Applying convolution theorem of Kamal transform in (23), we have 
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√𝜋𝑣5/2 = 𝐾{𝑥−1/2}𝐾{𝑢(𝑥)} 

⇒ √𝜋𝑣5/2 = √𝜋𝑣1/2𝐾{𝑢(𝑥)} 

⇒ 𝐾{𝑢(𝑥)} = 𝑣2                                                                                                                        (24)  

 

Applying inverse Kamal transform on both sides of (24), we get 

𝑢(𝑥) = 𝐾−1{𝑣2} 

⇒ 𝑢(𝑥) = 𝑥                                                                                                                                (25) 

which is the required solution of (22). 

 

8.5 Consider the Abel’s integral equation with (𝑥) = 2√𝑥 +
8

3
𝑥3/2 : 

2√𝑥 +
8

3
𝑥3/2  = ∫

1

√𝑥−𝑡
𝑢(𝑡)

𝑥

0
𝑑𝑡                                                                                                (26) 

 

Taking Kamal transform of both sides of (26), we have 

2𝐾{𝑥1/2} +
8

3
𝐾{𝑥3/2} = 𝐾 {∫

1

√𝑥 − 𝑡
𝑢(𝑡)

𝑥

0

𝑑𝑡} 

⇒ √𝜋𝑣3/2 + 2√𝜋𝑣5/2 = 𝐾{𝑥−1/2 ∗ 𝑢(𝑥)}                                                                               (27) 

 

Applying convolution theorem of Kamal transform in (27), we have 

√𝜋𝑣3/2 + 2√𝜋𝑣5/2 = 𝐾{𝑥−1/2}𝐾{𝑢(𝑥)} 

⇒ √𝜋𝑣3/2 + 2√𝜋𝑣5/2 = √𝜋𝑣1/2𝐾{𝑢(𝑥)} 

⇒ 𝐾{𝑢(𝑥)} = 𝑣 + 2𝑣2                                                                                                               (28)  

 

Applying inverse Kamal transform on both sides of (28), we get 

𝑢(𝑥) = 𝐾−1{𝑣} + 2𝐾−1{𝑣2} 

⇒ 𝑢(𝑥) = 1 + 2𝑥                                                                                                                        (29) 

which is the required solution of (26). 

 

 

 

8.6 Consider the Abel’s integral equation with (𝑥) =
3

8
𝜋𝑥2 : 

3

8
𝜋𝑥2  = ∫

1

√𝑥−𝑡
𝑢(𝑡)

𝑥

0
𝑑𝑡                                                                                                              (30) 

 

Taking Kamal transform of both sides of (30), we have 

3

8
𝜋𝐾{𝑥2} = 𝐾 {∫

1

√𝑥 − 𝑡
𝑢(𝑡)

𝑥

0

𝑑𝑡} 

⇒
3

4
𝜋𝑣3 = 𝐾{𝑥−1/2 ∗ 𝑢(𝑥)}                                                                                                        (31) 

 

Applying convolution theorem of Kamal transform in (31), we have 
3

4
𝜋𝑣3 = 𝐾{𝑥−1/2}𝐾{𝑢(𝑥)} 

⇒
3

4
𝜋𝑣3 = √𝜋𝑣1/2𝐾{𝑢(𝑥)} 

⇒ 𝐾{𝑢(𝑥)} =
3

4
√𝜋𝑣5/2                                                                                                               (32)  

 

Applying inverse Kamal transform on both sides of (32), we get 

𝑢(𝑥) =
3

4
√𝜋𝐾−1{𝑣5/2} 

⇒ 𝑢(𝑥) = 𝑥3/2                                                                                                                             (33) 

which is the required solution of (30). 

 

IX. CONCLUSION 
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In this paper, we have successfully discussed the application of Kamal transform for solving Abel’s integral 

equation. The given numerical applications in the application section explain the whole procedure of this scheme. 

The results show that Kamal transform is a powerful integral transform for handling Abel’s integral equation. In 

future, Kamal transform can be used for solving other singular integral equations and their systems. 
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